Model with an orography and heat exchanges

In the Model with an orography and a temperature profile, the radiative equilibrium temperature field at the middle of the atmosphere is specified by a given profile \(\theta^\star\) (thetas) and the system relaxes to this profile due to the Newtonian cooling.

In Li et al. [LI-LHH+18], another scheme for the temperature is proposed, based on the mechanism used for the Coupled ocean-atmosphere model (MAOOAM) and considering the radiative and heat exchanges between the atmosphere and the ground. As in MAOOAM, this mechanism is the one proposed in [LI-BB98] and depicted in the Temperature equations section of the MAOOAM documentation, with the ocean being replaced by the ground (with an orography).

The equations for this model thus read:

\[\begin{split}&\frac{\partial}{\partial t} \left(\nabla^2 \psi_{\rm a}\right) + J(\psi_{\rm a}, \nabla^2 \psi_{\rm a}) + J(\theta_{\rm a}, \nabla^2 \theta_{\rm a}) + \frac{1}{2} J(\psi_{\rm a} - \theta_{\rm a}, f_0 \, h/H_{\rm a}) + \beta \frac{\partial \psi_{\rm a}}{\partial x} = - \frac{k_d}{2} \nabla^2 (\psi_{\rm a} - \theta_{\rm a}) \\ &\frac{\partial}{\partial t} \left( \nabla^2 \theta_{\rm a} \right) + J(\psi_{\rm a}, \nabla^2 \theta_{\rm a}) + J(\theta_{\rm a}, \nabla^2 \psi_{\rm a}) - \frac{1}{2} J(\psi_{\rm a} - \theta_{\rm a}, f_0 \, h/H_{\rm a}) + \beta \frac{\partial \theta_{\rm a}}{\partial x} \nonumber \\ & \qquad \qquad \qquad \qquad \qquad \qquad = - 2 \, k'_d \nabla^2 \theta_{\rm a} + \frac{k_d}{2} \nabla^2 (\psi_{\rm a} - \theta_{\rm a}) + \frac{f_0}{\Delta p} \omega.\end{split}\]

and

\[\begin{split}\gamma_\text{a} \left( \frac{\partial T_\text{a}}{\partial t} + J(\psi_\text{a}, T_\text{a}) -\sigma \omega \frac{p}{R}\right) &= -\lambda (T_\text{a}-T_\text{o}) + \epsilon_\text{a} \sigma_\text{B} T_\text{o}^4 - 2 \epsilon_\text{a} \sigma_\text{B} T_\text{a}^4 + R_\text{a} \\ \gamma_\text{g} \, \frac{\partial T_\text{g}}{\partial t} &= -\lambda (T_\text{g}-T_\text{a}) -\sigma_\text{B} T_\text{g}^4 + \epsilon_\text{a} \sigma_\text{B} T_\text{a}^4 + R_\text{g}\end{split}\]

As in MAOOAM, the temperature fields are expanded around their equilibrium profile to yield quadratic equations for the deviations to these profiles:

\[\begin{split}\gamma_{\rm a} \Big( \frac{\partial \delta T_{\rm a}}{\partial t} + J(\psi_{\rm a}, \delta T_{\rm a} )- \sigma \omega \frac{\delta p}{R}\Big) &= -\lambda (\delta T_{\rm a}- \delta T_{\rm g}) +4 \sigma_B T_{{\rm g},0}^3 \delta T_{\rm g} - 8 \epsilon_{\rm a} \sigma_B T_{{\rm a},0}^3 \delta T_{\rm a} + \delta R_{\rm a} \nonumber \\ \gamma_{\rm g} \frac{\partial \delta T_{\rm g}}{\partial t} &= -\lambda (\delta T_{\rm g}- \delta T_{\rm a}) -4 \sigma_B T_{{\rm g},0}^3 \delta T_{\rm g} + 4 \epsilon_{\rm a} \sigma_B T_{{\rm a},0}^3 \delta T_{\rm a} + \delta R_{\rm g}. \nonumber\end{split}\]

and the ideal gas relation and the vertical discretization of the hydrostatic relation at 500 hPa allows to write the spatially dependent atmospheric temperature anomaly \(\delta T_\text{a} = 2f_0\;\theta_\text{a} /R\) where \(R\) (rr) is the ideal gas constant.

Ordinary differential equations

All the modes of this model version are expanded on the set of Fourier modes \(F_i\) detailed in the section Projecting the equations on a set of basis functions:

\[\begin{split}\psi_{\rm a}(x,y) & = & \sum_{i=1}^{n_{\mathrm{a}}} \, \psi_{{\rm a},i} \, F_i(x,y) \\ \theta_{\rm a}(x,y) & = & \sum_{i=1}^{n_{\mathrm{a}}} \, \theta_{{\rm a},i} \, F_i(x,y) \\ \delta T_{\rm a}(x,y) & = & \sum_{i=1}^{n_{\mathrm{a}}} \, \delta T_{{\rm a},i} \, F_i(x,y) \\ \delta T_{\rm g}(x,y) & = & \sum_{i=1}^{n_{\mathrm{a}}} \, \delta T_{{\rm g},i} \, F_i(x,y).\end{split}\]

and as in MAOOAM, the fields, parameters and variables are non-dimensionalized by dividing time by \(f_0^{-1}\) (f0), distance by the characteristic length scale \(L\) (L), pressure by the difference \(\Delta p\) (deltap), temperature by \(f_0^2 L^2/R\), and streamfunction by \(L^2 f_0\). As a result of this non-dimensionalization, the fields \(\theta_{\rm a}\) and \(\delta T_{\rm a}\) can be identified: \(2 \theta_{\rm a} \equiv \delta T_{\rm a}\).

The equations of the system of ordinary differential equations for this model thus read:

\[\begin{split}\dot\psi_{{\rm a},i} & = & - a_{i,i}^{-1} \sum_{j,m = 1}^{n_{\mathrm{a}}} b_{i, j, m} \left(\psi_{{\rm a},j}\, \psi_{{\rm a},m} + \theta_{{\rm a},j}\, \theta_{{\rm a},m}\right) - \frac{a_{i,i}^{-1}}{2} \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, h_m \left(\psi_{{\rm a},j}-\theta_{{\rm a},j}\right) \nonumber \\ & & \qquad \qquad \qquad \qquad - \beta\, a_{i,i}^{-1} \, \sum_{j=1}^{n_{\mathrm{a}}} \, c_{i, j} \, \psi_{{\rm a},j} - \frac{k_d}{2} \left(\psi_{{\rm a},i} - \theta_{{\rm a},i}\right) \\ \dot\theta_{{\rm a},i} & = & - a_{i,i}^{-1} \sum_{j,m = 1}^{n_{\mathrm{a}}} b_{i, j, m} \left(\psi_{{\rm a},j}\, \theta_{{\rm a},m} + \theta_{{\rm a},j}\, \psi_{{\rm a},m}\right) + \frac{a_{i,i}^{-1}}{2} \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, h_m \left(\psi_{{\rm a},j}-\theta_{{\rm a},j}\right) \nonumber \\ & & \qquad \qquad \qquad \qquad - \beta\, a_{i,i}^{-1} \, \sum_{j=1}^{n_{\mathrm{a}}} \, c_{i, j} \, \theta_{{\rm a},j} + \frac{k_d}{2} \left(\psi_{{\rm a},i} - \theta_{{\rm a},i}\right) - 2 \, k'_d \, \theta_{{\rm a},i} + a_{i,i}^{-1} \, \omega_i \\ \dot\theta_{\rm{a},i} & = & - \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, \psi_{{\rm a},j}\, \theta_{{\rm a},m} + \frac{\sigma}{2}\, \omega_i - \left(\lambda'_{\rm a} + S_{B,{\rm a}} \right) \, \theta_{\rm{a},i} + \left(\frac{\lambda'_{\rm a}}{2}+ S_{B, {\rm g}}\right) \, \delta T_{{\rm g},i} + C'_{\text{a},i} \\ \dot\delta T_{{\rm g},i} & = & - \left(\lambda'_{\rm g}+ s_{B,{\rm g}}\right) \, \delta T_{{\rm g},i} + \left(2 \,\lambda'_{\rm g} + s_{B,{\rm a}}\right) \, \theta_{{\rm a},i} + C'_{{\rm g},i}\end{split}\]

where the parameters values have been replaced by their non-dimensional ones and we have also defined \(G = - L^2/L_R^2\) (G), \(\lambda'_{{\rm a}} = \lambda/(\gamma_{\rm a} f_0)\) (Lpa), \(\lambda'_{{\rm g}} = \lambda/(\gamma_{\rm g} f_0)\) (Lpgo), \(S_{B,{\rm a}} = 8\,\epsilon_{\rm a}\, \sigma_B \, T_{{\rm a},0}^3 / (\gamma_{\rm a} f_0)\) (LSBpa), \(S_{B,{\rm g}} = 2\,\epsilon_{\rm a}\, \sigma_B \, T_{{\rm a},0}^3 / (\gamma_{\rm a} f_0)\) (LSBpgo), \(s_{B,{\rm a}} = 8\,\epsilon_{\rm a}\, \sigma_B \, T_{{\rm a},0}^3 / (\gamma_{\rm g} f_0)\) (sbpa), \(s_{B,{\rm g}} = 4\,\sigma_B \, T_{{\rm a},0}^3 / (\gamma_{\rm g} f_0)\) (sbpgo), \(C'_{{\rm a},i} = R C_{{\rm a},i} / (2 \gamma_{\rm a} L^2 f_0^3)\) (Cpa), \(C'_{{\rm g},i} = R C_{{\rm g},i} / (\gamma_{\rm g} L^2 f_0^3)\) (Cpgo).

The coefficients \(a_{i,j}\), \(g_{i, j, m}\), \(b_{i, j, m}\) and \(c_{i, j}\) are the inner products of the Fourier modes \(F_i\):

\[\begin{split}a_{i,j} & = & \frac{n}{2\pi^2}\int_0^\pi\int_0^{2\pi/n} F_i(x,y)\, \nabla^2 F_j(x,y)\, \mathrm{d} x \, \mathrm{d} y = - \delta_{ij} \, a_i^2 \\ g_{i, j, m} & = & \frac{n}{2\pi^2}\int_0^\pi\int_0^{2\pi/n} F_i(x,y)\, J\left(F_j(x,y), F_m(x,y)\right) \, \mathrm{d} x \, \mathrm{d} y \\ b_{i, j, m} & = & \frac{n}{2\pi^2}\int_0^\pi\int_0^{2\pi/n} F_i(x,y)\, J\left(F_j(x,y), \nabla^2 F_m(x,y)\right) \, \mathrm{d} x \, \mathrm{d} y \\ c_{i, j} & = & \frac{n}{2\pi^2}\int_0^\pi\int_0^{2\pi/n} F_i(x,y)\, \frac{\partial}{\partial x} F_j(x,y) \, \mathrm{d} x \, \mathrm{d} y\end{split}\]

These inner products are computed according to formulas found in [CT87] and stored in an object derived from the AtmosphericInnerProducts class.

The vertical velocity \(\omega_i\) can be eliminated, leading to the final equations

\[\begin{split}\dot\psi_{{\rm a},i} & = & - a_{i,i}^{-1} \sum_{j,m = 1}^{n_{\mathrm{a}}} b_{i, j, m} \left(\psi_{{\rm a},j}\, \psi_{{\rm a},m} + \theta_{{\rm a},j}\, \theta_{{\rm a},m}\right) - \frac{a_{i,i}^{-1}}{2} \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, h_m \left(\psi_{{\rm a},j}-\theta_{{\rm a},j}\right) \nonumber \\ & & \qquad \qquad \qquad \qquad - \beta\, a_{i,i}^{-1} \, \sum_{j=1}^{n_{\mathrm{a}}} \, c_{i, j} \, \psi_{{\rm a},j} - \frac{k_d}{2} \left(\psi_{{\rm a},i} - \theta_{{\rm a},i}\right) \\ \dot\theta_{{\rm a},i} & = & \frac{\sigma/2}{a_{i,i} \,\sigma/2 - 1} \left\{ - \sum_{j,m = 1}^{n_{\mathrm{a}}} b_{i, j, m} \left(\psi_{{\rm a},j}\, \theta_{{\rm a},m} + \theta_{{\rm a},j}\, \psi_{{\rm a},m}\right) + \frac{1}{2} \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, h_m \left(\psi_{{\rm a},j}-\theta_{{\rm a},j}\right) \right. \nonumber \\ & & \qquad \qquad \qquad \qquad - \beta\, \, \sum_{j=1}^{n_{\mathrm{a}}} \, c_{i, j} \, \theta_{{\rm a},j} + \left. \frac{k_d}{2} \, a_{i,i} \left(\psi_{{\rm a},i} - \theta_{{\rm a},i}\right) -2 \, k'_d \, a_{i,i} \, \theta_{{\rm a},i} \right\} \nonumber \\ & & + \frac{1}{a_{i,i} \,\sigma/2 - 1} \left\{ \sum_{j,m = 1}^{n_{\mathrm{a}}} g_{i, j, m} \, \psi_{{\rm a},j}\, \theta_{{\rm a},m} + \left(\lambda'_{\rm a} + S_{B,{\rm a}} \right) \, \theta_{\rm{a},i} \right. \nonumber \\ & & \qquad \qquad \qquad \qquad - \left.\left(\frac{\lambda'_{\rm a}}{2}+ S_{B, {\rm g}}\right) \, \delta T_{{\rm g},i} - C'_{\text{a},i} \right\} \\ \dot\delta T_{{\rm g},i} & = & - \left(\lambda'_{\rm g}+ s_{B,{\rm g}}\right) \, \delta T_{{\rm g},i} + \left(2 \,\lambda'_{\rm g} + s_{B,{\rm a}}\right) \, \theta_{{\rm a},i} + C'_{{\rm g},i}\end{split}\]

that are implemented by means of a tensorial contraction:

\[\frac{\text{d}\eta_i}{\text{d}t} = \sum_{j, k=0}^{3 n_\mathrm{a}} \mathcal{T}_{i,j,k} \; \eta_j \; \eta_k\]

with \(\boldsymbol{\eta} = (1, \psi_{{\rm a},1}, \ldots, \psi_{{\rm a},n_\mathrm{a}}, \theta_{{\rm a},1}, \ldots, \theta_{{\rm a},n_\mathrm{a}}, \delta T_{{\rm g},1}, \ldots, \delta T_{{\rm g},n_\mathrm{a}})\), as described in the Code Description. Note that \(\eta_0 \equiv 1\). The tensor \(\mathcal{T}\), which fully encodes the bilinear system of ODEs above, is computed and stored in the QgsTensor.

Example

An example about how to setup the model to use this model version is shown in Atmospheric model with heat exchange - Li et al. model version (2017).

References

LI-BB98

J. J. Barsugli and D. S. Battisti. The basic effects of atmosphere-ocean thermal coupling on midlatitude variability*. Journal of the Atmospheric Sciences, 55(4):477–493, 1998. URL: https://journals.ametsoc.org/doi/full/10.1175/1520-0469%281998%29055%3C0477%3ATBEOAO%3E2.0.CO%3B2.

LI-LHH+18

D. Li, Y. He, J. Huang, L. Bi, and L. Ding. Multiple equilibria in a land–atmosphere coupled system. Journal of Meteorological Research, 32(6):950–973, 2018. URL: https://doi.org/10.1007/s13351-018-8012-y.